. use
"C:\Users\Ken\Dropbox\WP.DOC\Jews\APSA2012\apsa1.dta", clear
.
*following commands generate factor score called polact
. factor polact1-polact12, mineigen(1)
(obs=4558)
Factor
analysis/correlation
Number of obs =
4558
Method: principal factors Retained factors = 1
Rotation: (unrotated) Number of params
= 12
--------------------------------------------------------------------------
Factor |
Eigenvalue
Difference Proportion Cumulative
-------------+------------------------------------------------------------
Factor1 |
3.18825 2.82780 1.0551 1.0551
Factor2 |
0.36045 0.14691 0.1193 1.1744
Factor3 |
0.21354 0.06551 0.0707 1.2451
Factor4 |
0.14803 0.16188 0.0490 1.2941
Factor5 |
-0.01385 0.03371 -0.0046 1.2895
Factor6 |
-0.04756 0.01979 -0.0157 1.2738
Factor7 |
-0.06735 0.03088 -0.0223 1.2515
Factor8 |
-0.09823 0.02922 -0.0325 1.2190
Factor9 |
-0.12745 0.03644 -0.0422 1.1768
Factor10 |
-0.16390 0.00949 -0.0542 1.1225
Factor11 |
-0.17339 0.02350 -0.0574 1.0652
Factor12 |
-0.19688 . -0.0652 1.0000
--------------------------------------------------------------------------
LR test: independent vs. saturated: chi2(66) = 1.1e+04 Prob>chi2 = 0.0000
Factor
loadings (pattern matrix) and unique variances
---------------------------------------
Variable | Factor1 | Uniqueness
-------------+----------+--------------
polact1 | 0.5381 |
0.7104
polact2 | 0.5984 |
0.6420
polact3 | 0.5701 |
0.6750
polact4 | 0.3049 |
0.9070
polact5 | 0.6255 |
0.6087
polact6 | 0.6210 |
0.6144
polact7 | 0.4681 |
0.7808
polact8 | 0.4837 |
0.7661
polact9 | 0.4535 |
0.7943
polact10 | 0.5569 |
0.6899
polact11 | 0.4386 |
0.8076
polact12 | 0.4296 |
0.8155
---------------------------------------
. rotate
Factor
analysis/correlation
Number of obs =
4558
Method: principal factors Retained factors = 1
Rotation: orthogonal varimax
(Kaiser off) Number of params = 12
--------------------------------------------------------------------------
Factor |
Variance Difference Proportion Cumulative
-------------+------------------------------------------------------------
Factor1 |
3.18825 . 1.0551 1.0551
--------------------------------------------------------------------------
LR test: independent vs. saturated: chi2(66) = 1.1e+04 Prob>chi2 = 0.0000
Rotated
factor loadings (pattern matrix) and unique variances
---------------------------------------
Variable | Factor1 | Uniqueness
-------------+----------+--------------
polact1 | 0.5381 |
0.7104
polact2 | 0.5984 |
0.6420
polact3 | 0.5701 |
0.6750
polact4 | 0.3049 |
0.9070
polact5 | 0.6255 |
0.6087
polact6 | 0.6210 |
0.6144
polact7 | 0.4681 |
0.7808
polact8 | 0.4837 |
0.7661
polact9 | 0.4535 |
0.7943
polact10 | 0.5569 |
0.6899
polact11 | 0.4386 |
0.8076
polact12 | 0.4296 |
0.8155
---------------------------------------
Factor
rotation matrix
-----------------------
| Factor1
-------------+---------
Factor1 | 1.0000
-----------------------
. predict polact, regression
Scoring
coefficients (method = regression; based on varimax
rotated factors)
------------------------
Variable | Factor1
-------------+----------
polact1 | 0.13694
polact2 | 0.16470
polact3 | 0.14650
polact4 | 0.06245
polact5 | 0.17616
polact6 | 0.17637
polact7 | 0.11175
polact8 | 0.11604
polact9 | 0.10566
polact10 | 0.14622
polact11 | 0.09997
polact12 | 0.09370
------------------------
. alpha polact1-polact12
Test
scale = mean(unstandardized items)
Average
interitem covariance: .0148708
Number
of items in the scale: 12
Scale
reliability coefficient: 0.7906
.
*following commands generate count variable called polacttot
. generate
polacttot=polact1+polact2+polact3+polact4+polact5+polact6+polact7+polact8+polact9+
polact10+polact11+polact12